
Eur. Phys. J. C 51, 569–583 (2007) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-007-0316-5

Regular Article – Theoretical Physics

Scalar QED, NLO and PHOTOS Monte Carloa

G. Nanava1,b, Z. Wa̧s1,2

1 Institute of Nuclear Physics, PAN, Kraków, ul. Radzikowskiego 152, Poland
2 CERN, 1211 Geneva 23, Switzerland

Received: 28 February 2007 /
Published online: 17 May 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. Recently,QEDbremsstrahlung inBmeson decays into pair of scalars (πs and/orKs) has become of
interest. If experimental acceptancemust be taken into account, the PHOTOSMonte Carlo technique is often
used in experimental simulations. We will use scalar QED to benchmark PHOTOS, even though this theory
is of limited use for complex objects. We present the analytical form of the kernel used in the older versions of
PHOTOS, and the new, exact (scalar QED) one. Matrix element and phase-space Jacobians are separated in
the final weight, and future extensions based on measurable electromagnetic form-factors are thus possible.
The massive phase-space is controlled in the program with no approximations. Thanks to the iterative solu-
tion, all leading and next to leading logarithmic terms are properly reproduced by theMonteCarlo simulation.
Simultaneously, full differential distributions over the complete multiple-body phase-space are provided. An
agreement of better than 0.01%with independent calculations of scalar QED is demonstrated.

PACS. 13.20.He; 13.40.Ks

1 Introduction

In the analysis of data from high-energy physics experi-
ments, one tries to resolve the “experiment = theory” equa-
tion. This non-trivial task requires that a lot of different ef-
fects be considered simultaneously. From the experimental
side, these are mainly detector acceptance and cuts, which
are dictated by the construction and physical properties of
the detector. The shapes of the distributions may be dis-
torted by, say, misidentification and residual background
contamination. These effects need to be discriminated in
an appropriate and well-controlled way. From the theoret-
ical side, all effects of known physics have to be included
in the predictions as well. Only then the experimental data
and theoretical predictions can be confronted to determine
the numerical values of the coupling constants or the effects
of new physics (to be discovered).
Awell-defined class of theoretical effects consists ofQED

radiative corrections. PHOTOS is a universal Monte Carlo
algorithm that simulates the effects of QED radiative cor-
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rections in decays of particles and resonances. It is a project
with a rather long history: the first version was released in
1991 [1], followed by version 2.0 [2] (double emission and
threshold terms for fermions).Thepackage is inwide use [3];
it was applied as a precision simulation tool for theW mass
measurement at the Tevatron [4] and LEP [5, 6], and for
CKMmatrix measurements in the decays ofK andB reso-
nances (NA48 [7], KTeV [8], Belle [9], BaBar [10] and Fer-
milab [11]). Discussion of the different components of the
systematic errors in PHOTOS is thus of interest.
Throughout the years the core algorithm for the gener-

ation of O(α) corrections did not change much; however,
its precision, applicability to various processes, and numer-
ical stability improved significantly. New functionalities,
such as multiple photon radiation and interference effects
for all possible decays, were introduced [12, 13]. Recently,
the complete first order matrix element was introduced
into PHOTOS for Z decays and complete NLO1 multiple

1 In the paper, we will use the abbreviations NLO, NLL,
NNLO, NNLL to denote next to leading order, next to leading
logarithm, next to next to leading order, next to next to lead-
ing logarithm corrections with respect to leading order (that is,
without QED at all). The meaning for such abbreviations can-
not be defined restrictively on the basis of approximations used
in phase-space. The properties of the matrix elements need
to be specified as well. Nonetheless, we will use the abbrevia-
tions later in the paper to denote such approximations in the
phase-space Jacobians, which do not prevent the appropriate
precision from holding if a proper choice of the matrix elements
is made as well.
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photon predictions for that channel were demonstrated to
work well [14].
Increasing interest in the algorithm expressed by ex-

perimental collaborations (including future LHC experi-
ments and precise measurements for B decays) was a mo-
tivation to perform a more detailed study of the potential
and precision of the PHOTOS algorithm. This paper is
devoted to the decay of B mesons into a pair of scalars.
It is a continuation of the previous paper [14], devoted
to Z decays. We concentrate our attention on the exact
phase-space parametrization as used in PHOTOS, and on
the explicit separation of the final weight into parts re-
sponsible for the following:(i)mass dependent phase-space
Jacobians, (ii) matrix elements and (iii) presampler for
peaks.
Simplifications introduced in the matrix element nor-

mally used in these scalar B meson decays are removed,
and the exact kernel of the first order scalar QED calcu-
lation is installed. Such an improvement opens the way to
the inclusion of data dependent form-factors into the ma-
trix elements of PHOTOS and to physically better results
than of scalar QED alone.
Our study of the PHOTOS algorithm can be under-

stood as another step in the on-going effort to find practical
solutions of the improved expansions. The solution can be
seen as a rearrangement of the QED perturbation expan-
sion, but this time for the interaction of charged scalars
with photons and in the case in which ultrarelativistic ap-
proximations are not valid.
To test PHOTOS we have used predictions of the

SANC [15] Monte Carlo algorithm. SANC is able to cal-
culate the exact first order scalar QED matrix elem-
ents for decays of B mesons into scalars, and it cov-
ers the full phase-space of the decay products with-
out any approximations. Events provided by SANC MC
are unweighted. SANC is a network client-server sys-
tem for the semi-automatic calculation of electroweak,
QCD and QED radiative corrections at one-loop precision
level for various processes (decays) of elementary particle
interactions.
The paper is organized as follows. Section 2 is devoted

to the description of our results obtained from scalar QED,
which will be used later in tests and in the construction
of the kernel for single photon emission. In Sect. 3 the
main properties used in the design of PHOTOS are pre-
sented. In particular, the construction of the weight (NLO
level) necessary to introduce the complete first order ma-
trix element is explained in full detail. The phase-space
parametrization used in the iterative solution of PHO-
TOS is given. Details are collected in the appendix. On
the other hand, aspects of the construction, quite es-
sential for complete NLL, will still remain poorly docu-
mented. The issue is how the parts of the single photon
emission matrix element are used in the kernel (iterated
and thus extended to multiphoton emissions). Section 4
is devoted to the results of numerical tests performed at
fixed, first order of QED. Some numerical results obtained
with the multiphoton version of the program will be col-
lected there for reference. Finally, Sect. 5 summarizes the
paper.

2 Scalar QED and B decays

In this section we give the formulae needed in the construc-
tion of the Monte Carlo routine of two-particle B meson
decays and the analytical results of the decay rates atO(α)
in scalar QED when the masses of the decay products are
neglected. The one-loop QED corrections to the width of

the decays B0,−→ H−1 H
+,0
2 , where H1,2 denotes scalar

(pseudo-scalar) particles, can be represented as a sum of
the Born contribution and the contributions due to virtual
loop diagrams and soft and hard photon emissions. Both
virtual and soft contributions factorize to the Born one.We
have

dΓTotal = dΓBorn
[
1+
α

π

(
δsoft+ δvirt

)]
+ dΓHard .

(1)

Here dΓBorn is the tree level differential decay width, δvirt

represents the virtual corrections, δsoft denotes the soft
photon contribution, and dΓHard is the hard photon con-
tribution. The Born level distribution in the rest frame of
the decaying meson can be written as

dΓBorn =
1

2M

∣∣ABorn∣∣2 dLips2(P → k1, k2) , (2)

where M is the mass of the decaying particle, k1,2 de-
note the momenta of the decay products, ABorn stands for
the corresponding tree level amplitude, and dLips2(P →
k1, k2) is the two-body differential phase-space. For the lat-
ter we choose the following parametrization:

dLips2(P → k1, k2)

=
1

32π2
λ1/2(M2,m21,m

2
2)

M2
d cos θ1dφ1 , (3)

where the angles θ1 and φ1 define the orientation of the
momentum k1 in the rest frame of the B meson. As usual
we define λ

1
2 (a, b, c) =

√
a2+ b2+ c2−2ab−2ac−2bc. In

the case of neutralB meson decay channels,B0→H−1 H
+
2 ,

the scalar QED calculations for the virtual and soft factors
in (1) give

δvirt =

[
1+
M2−m21−m

2
2

Λ
ln

2m1m2
M2−m21−m

2
2+Λ

]
ln
M2

m2γ

+
3

2
ln
µ2UV
M2
+
M2−m21−m

2
2

2Λ

×

[
Li2

(
M2+m21−m

2
2+Λ

2Λ

)

−Li2

(
M2+m21−m

2
2−Λ

−2Λ

)

+2 ln
2Mm1

M2+m21−m
2
2+Λ

ln
m1Λ

M3

+(1↔ 2)+π2
]

−
Λ

2M2
ln

2m1m2
M2−m21−m

2
2+Λ

+
m22−m

2
1

4M2
ln
m22
m21

−
1

2
ln
m1m2

M2
+1 , (4)
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δsoft =

[
1+
M2−m21−m

2
2

Λ
ln

2m1m2
M2−m21−m

2
2+Λ

]
ln
m2γ
4ω2

+
M2−m21−m

2
2

2Λ

[
Li2

(
−2Λ

M2+m21−m
2
2−Λ

)

−Li2

(
2Λ

M2+m21−m
2
2+Λ

)
+(1↔ 2)

]

−
M2+m21−m

2
2

Λ
ln

2Mm1
M2+m21−m

2
2+Λ

− (1↔ 2) ,

(5)

where m1,2 are the final meson masses, an auxiliary small
parameter ω�M/2 separates the soft and hard photon
contributions, and µUV denotes the ultraviolet scale. An
auxiliary photon mass mγ is used as a regulator of the
infrared divergences. The ultraviolet singularities are regu-
larized by means of dimensional regularization. We renor-
malize the wave functions of the external scalar fields in
the on-shell scheme and for point-like weak coupling in the
MS scheme. We have Λ= λ1/2(M2,m21,m

2
2) and Li2(z) =

−
∫ z
0
dy
y
ln |1−y|.

The hard photon distribution dΓHard in scalar QED
can be expressed as follows:

dΓHard =
1

2M
|ABorn|24πα

(
q1
k1.ε

k1.kγ
− q2

k2.ε

k2.kγ

)2

× dLips3(P → k1, k2, kγ) . (6)

Here, q1,2 are the charges of the final mesons, and kγ and
εµ are the photon momentum and polarization vector, re-
spectively. The three-body differential phase-space of the
decay products, dLips3(P → k1, k2, kγ), is parametrized,
in a rather standard way (see e.g. [16]), as follows:

dLips3(P → k1, k2, kγ)

=
λ1/2(1−2Eγ/M,m21/M

2,m22/M
2)

16(2π)5(1−2Eγ/M)

×Eγ dEγ d cos θγ dφγ d cos θ
R
1 dφ

R
1 , (7)

where the angles θR1 and φ
R
1 define the orientation of the

momentum k1 in the rest frame of (k1+k2); the photon
energyEγ and the angles θγ and φγ , which define the orien-
tation of the photonmomentum, are given in the rest frame
of the decaying particle. These parameters vary in the lim-
its 0≤ θγ , θR1 ≤ π, 0≤ φγ , φ

R
1 ≤ 2π and ω ≤ Eγ ≤ (M

2−
(m1+m2)

2)/2M . Equations (1)–(7) are used in the con-
struction of the Monte Carlo simulator of the decays under
consideration. An analytical integration in (6) over the
phase-space variables (7) can easily be done. Below we give
the result of integration in the massless limit of the final
mesons (i.e.m1,m2 ≡m→ 0), because of its simplicity,

ΓHard = ΓBorn
α

π

[(
1+ ln

m2

M2

)
ln
4ω2

M2
+ln

m4

M4
−
π2

3
+4

]
.

(8)

The virtual correction depends on the ultraviolet scale
µUV, which should cancel in the total decay width, because
of the scale dependence of the point-like weak coupling.

The infrared divergence cancels in the sum of virtual and
soft contributions, as it must. The total decay width, which
is the sum of the contributions (4), (5), and (8), is also free
of ω and of the final meson mass singularity in accordance
with the KLN theorem [17]–[18]:

ΓTotal = ΓBorn
[
1+
α

π

(
3

2
ln
µ2UV
M2
+5

)]
. (9)

The same calculations can be done for the charged B
meson decay channels B−→H−1 H

0
2 . In this case, for the

various contributions in (1), we obtain
– a virtual photon contribution,

δvirt =

[
1+
M2+m21−m

2
2

Λ
ln

2Mm1
M2+m21−m

2
2+Λ

]
ln
Mm1

m2γ

+
M2+m21−m

2
2

2Λ

[
Li2

(
M2−m21−m

2
2+Λ

2Λ

)

−Li2

(
M2−m21−m

2
2−Λ

−2Λ

)

+Li2

(
M2+m22−m

2
1−Λ

−2Λ

)

−Li2

(
M2+m22−m

2
1+Λ

2Λ

)

+2 ln
2Mm1

M2+m21−m
2
2+Λ

ln
Λ

Mm2

− ln
2Mm2

M2+m22−m
2
1+Λ

ln
M2

m21

]
+
3

2
ln
µ2UV
Mm1

+
Λ

2m22
ln

2Mm1
M2+m21−m

2
2+Λ

−
M2−m21
4m22

ln
m21
M2
+1 ; (10)

– a soft photon contribution,

δsoft =

[
1+
M2+m21−m

2
2

Λ
ln

2Mm1
M2+m21−m

2
2+Λ

]
ln
m2γ

4ω2

+
M2+m21−m

2
2

2Λ

[
Li2

(
−2Λ

M2+m21−m
2
2−Λ

)

−Li2

(
2Λ

M2+m21−m
2
2+Λ

)]

−
M2+m21−m

2
2

Λ
ln

2Mm1
M2+m21−m

2
2+Λ

+1 ; (11)

– and a hard photon contribution,

dΓHard =
1

2M
|ABorn|24πα

(
q1
k1.ε

k1.kγ
− q
P.ε

P.kγ

)2

× dLips3(P → k1, k2, kγ) ,

ΓHard = ΓBorn
α

π

[(
1+ ln

m

M

)
ln
4ω2

M2

+ln
m2

M2
−
π2

6
+3

]
. (12)
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Table 1. Comparison of the B-meson total decay widths pro-
duced by analytical calculations (second column) and by Monte
Carlo (third column). The last significant digit of the Monte
Carlo results is given in brackets

Channel ΓTotalAC , 10−3MeV ΓTotalMC , 10
−3MeV

B−→ π−π0 0.373629 0.3736(4)

B−→K−K0 0.367586 0.3675(9)

B0→ π−π+ 0.377392 0.3773(8)

B0→K−K+ 0.371414 0.3714(2)

Again after integration over the phase-space variables, the
massless limit of the final mesons (i.e. m1,m2 ≡m→ 0)
was used in the previous formula. Finally, summing the
contributions (10)–(12), we obtain the following expression
for the total decay width:

ΓTotal = ΓBorn
[
1+
α

π

(
3

2
ln
µ2UV
M2
−
π2

3
+
11

2

)]
.

(13)

We have checked that the factors δsoft and δvirt in (1),
for both charged and neutral B meson decays, provide the
same numerical results as the corresponding expressions
in [19].
To be assured of the accuracy of the SANCMonte Carlo

integration (which is a byproduct of the MC simulation),
we compared the Monte Carlo results with the analyti-
cal calculations of the total decay rate. The result of this
comparison is shown in Table 12. The agreement is thus
better than 10−4 in this test, in which mass effects had
been included.

3 Exact phase-space and matrix element

To start any discussion of the implementation of complete
first order QED radiative corrections in B decay, one has
to specify the parametrization of the complete phase-space
slots of the fixed final-state multiplicity.
Let us start with the explicit expression for the para-

metrization of an n+1-body phase-space in the decay of
the object of four-momentum P (P 2 =M2), as used in
PHOTOSMonte Carlo. As our aim is to define iterative re-
lations, let us denote the four-momenta of the first n decay
products as ki (i= 1, n) and the last n+1 decay product as
kn+1. In our case the n+1th particle will always be the real
and massless photon3. In the latter steps of our construc-
tion the masslessness of the photons and the properties of
the QED matrix elements will be used.

2 Please note that these numbers are for the purpose of our
test only; the overall B–H–H coupling constants do not match
the experimental data.
3 However the construction does not rely on a photon to be
massless. In principle it can be applied to define other phase-
space relations, for example the emission of an extra massive
pion or emission of a pair of heavy particles.

In the following, the notation from [20, 21] will be used.
We will not rely on any particular results of these papers.
We only point out other, similar options for the exact n-
body phase-space parametrizations, which are also in use.
The Lorentz invariant phase-space is defined as follows:

dLipsn+1(P )

=
d3k1
2k01(2π)

3
. . .

d3kn
2k0n(2π)

3

d3kn+1
2k0n+1(2π)

3

× (2π)4δ4
(
P −kn+1−

n∑
i=1

ki

)

= d4pδ4(P −p−kn+1)
d3kn+1
2k0n+1(2π)

3

×
d3k1
2k01(2π)

3
. . .

d3kn
2k0n(2π)

3
(2π)4δ4

(
p−

n∑
i=1

ki

)

= d4pδ4(P −p−kn+1)
d3kn+1
2k0n+1(2π)

3

× dLipsn(p→ k1 . . . kn) , (14)

where extra integration variables and the four-vector p
(compensated with δ4(p−

∑n
1 ki)) are introduced. If fur-

ther M1...n (compensated with δ(p
2−M21...n)) is intro-

duced, the element of the phase-space takes the form

dLipsn+1(P )

=
dM21...n
(2π)

dLips2(P → p kn+1)dLipsn(p→ k1 . . . kn)

= dM21...n

[
d cos θ̂dφ̂

1

8(2π)3
λ
1
2
(
M2,M21...n,m

2
n+1

)
M2

]

× dLipsn(p→ k1 . . . kn) . (15)

The part of the phase-space Jacobian corresponding to in-
tegration over the direction and energy of the last particle
(or equivalently the invariant mass M1...n of the remain-
ing system of 1 . . . n particles) is explicitly given. We will
use later in the formulas m2i = k

2
i , and analogouslyMi...n,

defining the invariant masses of the ki . . . kn systems. The
integration over the angles θ̂ and φ̂ is defined in the P rest
frame. The integration over the invariant mass, M1...n, is
limited by phase-space boundaries. Anybody familiar with
the phase-space parametrization as used in FOWL [16],
TAUOLA [21], or in many other programs will find the
above explanation quite standard4.
The question of the choice of axes with respect to which

angles are defined and of the order in the kinematical con-
struction is less trivial. The choice for the particular option
stems from the necessity to presample collinear singulari-
ties. It is rather well known that the choice of the reference
directions for the parametrization of the unit sphere is free,

4 The parametrizations of such a type use the properties of
the Lorentz group in an explicit manner, in particular the meas-
ure, representations and their products. That is why they are
useful for event building Monte Carlo programs in phase-space
constructions based on boosts and rotations.
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and that it can be used to advantage. We will use a re-
lated, but somewhat different freedom of choice. Instead
of the variables θ̂ and φ̂ defining the orientation of kn+1
in the P rest frame we will use the angles θ1 and φ1 ori-
enting k1 (also in the P rest frame). The Jacobian for this
reparametrization of the unit sphere equals 1 as well5.
Equation (15) can be iterated and provides a param-

etrization of the phase-space with an arbitrary number of
final-state particles. In such a case, the question of the
orientation of the frames used to define the angles and the
order of theMi...n integrations (consequently, the choice of
the limits for the Mi...n integration) becomes particularly
rich. Our choice is defined in [2]. We will not elaborate on
this point here; nothing new was introduced for the pur-
pose of our study.
If the invariant massM1...n is replaced with the photon

energy defined in the P rest frame, kγ , then the phase-
space formula can be written as

dLipsn+1(P )

=

[
kγ dkγ d cos θ̂dφ̂

1

2(2π)3

]
dLipsn(p→ k1 . . . kn) .

(16)

If we would have l photons accompanying n other par-
ticles, then the factor in square brackets is iterated. The
statistical factor 1

l! would complete the form of the phase-
space parametrization, similar to the formal expansion of
the exponent. The latter formula, supplemented with the
definition of the frames with respect to which the angles
are defined is used to define the full kinematic configura-
tion of the event. From the angles and energies (kγi) of the
photons and also of the angles, energies and masses for the
other decay products, the four-momenta of all final-state
particles can be constructed.
If in (16) instead of dLipsn(p→ k1 . . . kn) one would use

dLipsn(P → k1 . . . kn), then the tangent spacewould be ob-
tained. Then the kn+1 photon does not affect the other
particles’ momenta at all and thus has no boundaries on
energy or direction. If this formula would be iterated, then
all such photons would be independent from one another as
well6. Energy and momentum constraints on the photon(s)
are introduced with the relation between the tangent and
the actual n+1-body phase-space. The formula defining
one step in the iteration reads as follows7:

dLipsn+1(P → k1 . . . kn, kn+1) = dLips
+1 tangent
n ×Wn+1n ,

5 Let us point out another difference with respect to the an-
gles θR1 and φ

R
1 used in (7) (and also in [16, 21]). For example,

if n= 2, then our dLipsn=2 phase-space is parametrized by the
angles θ and φ only. The two angles will define the orientation
of kγ with respect to the frame used for the quantization of the
internal state of k1, and this is a choice different from the one
used for φR1 , even though θ = θ

R
1 . The Jacobian for the corres-

ponding change of variables equals 1 also.
6 Expression (16) would be slightly more complicated if in-
stead of photons a massive particle were to be added.
7 The {k̄1, . . . , k̄n} can be identified with the event before the
radiation of kγ is introduced.

dLips+1 tangentn = dkγ d cos θdφ× dLipsn(P → k̄1 . . . k̄n),

{k1, . . . , kn+1}=T
(
kγ , θ, φ, {k̄1, . . . , k̄n}

)
. (17)

The Wn+1n depends on details of T and will thus be given
later in (23). To justify (17), we have to convolute (15)
for Lipsn+1(P → k1 . . . kn, kn+1) with itself (for Lipsn(p→
k1 . . . kn)):

Lipsn+1(P → k1 . . . kn, kn+1)

=
dM21...n
2π

Lips2(P → kn+1p)Lipsn(p→ k1 . . . kn),

Lipsn(p→ k1 . . . kn)

=
dM22...n
2π

Lips2(p→ k1p
′)Lipsn−1(p

′→ k2 . . . kn)

(18)

and use it also for Lipsn(P → k̄1 . . . k̄n):

Lipsn(P → k̄1 . . . k̄n)

=
dM22...n
2π

Lips2(P → k̄1p̄
′)Lipsn−1(p̄

′→ k̄2 . . . k̄n) .

(19)

Note that our tangent space of the variables dkγ d
cos θdφ is unbounded from above, and the limit is intro-
duced byWn+1n , which is set to zero for the configurations
outside the phase-space. In principle, we should distin-
guish between variables likeM2...n for an invariant mass of
k2 . . . kn and M̄2...n for an invariant mass of k̄2 . . . k̄n, but
in our choice for Gn and Gn+1 below, M2...n = M̄2...n and
M1...n is defined anyway for the n+1-body phase-space
only.
We refer the reader to [1, 2] for an alternative presen-

tation. Let us remark that (17) is quite general; many op-
tions, motivated by the properties of the matrix elements,
can be introduced. Generally the transformation T may
differ quite a lot from choice to choice. The most straight-
forward choice can be based on any n- and n+1-body
phase-space parametrizations using invariant masses and
angles (e.g. exactly as in TAUOLA [21] formulas 11 to 13).
If

Gn : M
2
2...n , θ1 , φ1 ,M

2
3...n , θ2 , φ2 , . . . , θn−1 , φn−1

→ k̄1 . . . k̄n (20)

and

Gn+1 : kγ , θ , φ ,M
2
2...n , θ1 , φ1 ,M

2
3...n , θ2 , φ2 , . . . ,

θn−1 , φn−1

→ k1 . . . kn, kn+1 (21)

then

T=Gn+1
(
kγ , θ, φ,G

−1
n

(
k̄1, . . . , k̄n

))
. (22)

The ratio of the Jacobians (factors λ1/2 like in (15), etc.)
form the factorWn+1n , which in our case is rather simple,

Wn+1n = kγ
1

2(2π)3
×
λ1/2

(
1,m21/M

2
1...n,M

2
2...n/M

2
1...n

)
λ1/2 (1,m21/M

2,M22...n/M
2)

,

(23)
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because of the choice for G as explained in the appendix.

Note that kγ =
M2−M21...n

2M . There are additional benefits
for such a choice. In all relations k̄2 = Lk2, . . . , k̄n = Lkn
and p̄′ = Lp′, a common Lorentz transformation L is used.
The transformation L is defined from k1, k̄1, p̄

′, p′ and P ;
the internal relations between the four-vectors k2 . . . kn
(k̄2 . . . k̄n) are not needed.
Equation (17) can be realized algorithmically in the fol-

lowing way.

1. For any point in n-body phase-space (earlier generated
event), described for example with the explicit configu-
ration of four vectors k̄1 . . . k̄n, the coordinate variables
can be calculated, using (20).

2. Photon variables can be generated according to (17).
The weightWn+1n also has to be attributed.

3. Variables obtained in this way from the old configura-
tion and the one of a photon can be used to construct
the new kinematical configuration for the n+1-body
final state. The phase-space weight, which is zero for
configurations outside the phase-space boundaries, can
be calculated at this point from (17) and (23) and fi-
nally combined with the matrix element.

Here we have chosen two sub-groups of particles. The
first one consisted of particle 1 alone, and the second one
of particles 2 to n combined. Obviously in the case of two-
body decays, as discussed in this paper, there is not much
choice when the construction of the first photon is per-
formed.
By iteration, we can generalize (17) to the case of l pho-

tons, and we write

dLipsn+l(P → k1 . . . kn, kn+1 . . . kn+l)

=
1

l!

l∏
i=1

[
dkγi d cos θγi dφγiW

n+i
n+i−1

]

× dLipsn(P → k̄1 . . . k̄n),

{k1, . . . , kn+l}

=T
(
kγl , θγl , φγl ,T

(
. . . ,T

(
kγ1 , θγ1 , φγ1 ,

{k̄1, . . . , k̄n}
)
. . .
))
. (24)

In this formula we can easily localize the tangent space
for the multiple photon configuration. In this space, each
photon is independent from the other particles’ momenta.
Note that it is also possible to fix the upper boundary
on kγi arbitrarily high. Photons are mutually independent
as well. Correlations appear later, thanks to the iterated
transformation T . The factorsWn+in+i−1 are calculated when
the constraints on each consecutive photon are introduced;
the previously constructed ones are included in the n+
i−1 system8.
Of course, for the tangent space to be useful, the choice

of the definition of T must be restricted at least by the con-
dition {k1, · · · kn}→ {k̄1, · · · k̄n} if all kγi → 0.

9

8 Configurations of kγi which cannot be resolved are replaced
by the ones with that photon dropped.
9 In fact, further constraints have to be fulfilled to enable pre-
sampling for the collinear singularities.

It is important to realize that one has to choose the ma-
trix elements on the tangent space to complete the construc-
tion used in PHOTOS.The number and energies of photons
will be generated on the tangent space first. Regularization
of (at least) a soft singularitymust be defined.Rejection and
event construction are performed with the help of (17) for
each consecutive photon. It diminishes the photonmultipli-
city with respect to the one defined for the tangent space.
Of course, as a rejection implements changes in the phase-
space density, amatrix element (with virtual corrections) of
the physical space can be introduced as well.
The treatment of the phase-space presented here lies at

the heart of the construction of PHOTOS kinematics and
has been used since its beginning. It exhausts the case when
there is only one charged particle in the final state. For mul-
tiple charged particle final states a new complication ap-
pears, because all collinear configurations need simultan-
eous attention, and not only the one along the k1 direction.
A presampler with multichannel generation is needed. In
our case we follow the samemethod10 as explained in [21].
In the standard version of PHOTOS, as published

in [1, 2], the following matrix element is used for single pho-
ton emission when there is only one charged particle in the
final state:

|M|2PHOTOS = |A
Born|2WTold3 , (25)

where

WTold3 =
4πα

WT1WT2

2(1−x)

1+(1−x)2

(
1−

m2R
1−β2 cos2 θ

)

×
1+β cos θ

2

1−
√
1−m2R cos θ

1−β cos θ
,

β =

√
1−4

m21
M2(1−x)

1

(1−x+(m21−m
2
2)/M

2)2
,

x=
2Eγ
M

M2

M2− (m1+m2)2
,

m2R = 4
m21

M2(1+m21/M
2)2
. (26)

The old and lengthy approximation WTold3 for WT3 im-
plemented in standard PHOTOS is kept for compatibility
with [2]. The expression definingWT3 without approxima-
tions reads

|M|2exact = |A
Born|24πα

(
q1
k1.ε

k1.kγ
− q
P.ε

P.kγ

)2

= |ABorn|24πα
8

M2
×WT3(P, k1, k2, kγ) ,

Note that the variables kγm , θγm , φγm are used at the time of
the mth step of the iteration only, and they are not needed
elsewhere in the construction of the physical phase-space; the
same is true for the invariants and angles M22...n, θ1, φ1, . . . ,
θn−1, φn−1→ k̄1 . . . k̄n of (20) and (21), which are also rede-
fined at each step of the iteration.
10 We will omit details here, because for the two-body final
states the complications manifest themselves only in the case of
multiple photon generation; see the appendix.
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′′WT3(P, k1, k2, kγ)

=

(
M
2Eγ

)2
λ
(
1,
m21
τ
,
m22
τ

)(
1− 2Eγ

M

)
sin2 θ

2
(
1+

m21−m
2
2

τ
−λ1/2

(
1,
m21
τ
,
m22
τ

)
cos θ
)2 ; (27)

here, τ = (k1+k2)
2. In both the standard and exact ver-

sion of PHOTOS, the same phase-space parametrization
and presampler for collinear and soft singularities are used.
Together with WT3 the following WT1 and WT2 factors
related to the phase-space contribute to the final weight
implemented in the routine PHOCOR of PHOTOS:

WT1(P, k1, k2, kγ) =
λ1/2

(
1,
m21
M2
,
m22
M2

)

λ1/2
(
1,
m21
τ
,
m22
τ

) 2Eγ
M
,

WT2(P, k1, k2, kγ) =
2(1− cosθ

√
1−m2R)

1+(1−x)2
M

2Eγ
.

(28)

The expression for WT1 can be deciphered from (17), and
WT2 is related to the presamplers for the collinear and soft
singularities. The factors WT1 and WT2 are only used in
the present paper in the definition of WTold3 ; see (26).
The combined effect of the virtual and real corrections

on the total rate is manifest through Γ
Total

ΓBorn
. The virtual

corrections are included into PHOTOS through this factor.
Let us point out that the ratio of (27) and (25) constitutes
the basic element of upgrading the PHOTOS functionality
to the complete first order11. The correcting weight can be
chosen simply as

wt =
|M|2exact
|M|2PHOTOS

ΓBorn

ΓTotal
. (29)

For the standard version of PHOTOS the virtual correc-
tions are required to be such that the total decay rate
remains unchanged after complete QED corrections are
included.
In the case of final states with two charged particles in

PHOTOS, (29) needs to be modified with one of the follow-
ing versions of the interference weight:

wt =
∑
i=1,2

|M|2exact
|M|2PHOTOS

∣∣∣∣∣
i

ΓBorn

ΓTotal
WTiINT ,

WTiINT =

(
q1
k1.ε
k1.kγ

− q2
k2.ε
k2.kγ

)2
(
q1
k1.ε
k1.kγ

− q1
P.ε
P.kγ

)2
+
(
q2
k2.ε
k2.kγ

− q2
P.ε
P.kγ

)2 ,

11 When the option of multiple radiation is used in PHOTOS,
the single photon emission kernel is iterated. This leads to some
complications.

WTiINT−opt.= Ji

(
q1
k1.ε

k1.kγ
− q2

k2.ε

k2.kγ

)2

/((
q1
k1.ε

k1.kγ
− q1

P.ε

P.kγ

)2
J1

+

(
q2
k2.ε

k2.kγ
− q2

P.ε

P.kγ

)2
J2

)
,

J1 =
1

WT1(P, k1, k2, kγ)WT2(P, k1, k2, kγ)
,

J2 =
1

WT1(P, k2, k1, kγ)WT2(P, k2, k1, kγ)
.

(30)

The sum over two generation channels i = 1, 2 related to
the emission from q1 and q2 is to be performed

12. The form
of WTiINT results from the exact expressions, (12) and (6).
However, the phase-space and multichannel presampler
specific terms (28) need to be discussed. The presence of J1
and J2 in the interference weight is optional, but only for
single photon radiation. The factor J1,2 (J1 or J2) should
cancel the WT1 ·WT2 term of the generation branch used
for this particular event generation. In general, the absence
of J1,2 terms is due to the properties of the second order
matrix element13. For the time being, analogs to the case of
Z decay have to be used instead of the proof.
Once we have completed the description of our internal

correcting weight necessary for PHOTOS to work in the
NLO regime, we will turn to the numerical results.

4 Results of the tests

The most attractive property of Monte Carlo is the pos-
sibility to implement selection criteria for the theoretical
predictions that coincide with the experimental ones. Es-
pecially in the case of the final state bremsstrahlung the
presence of experimental cut-offs is essential, as they usu-
ally significantly increase the size of the QED effects.
In this section we will concentrate, however, on the fol-

lowing pseudo-observables, as used in [22, 23].

– The photon energy in the decaying particle rest frame:
this observable is sensitive mainly to the leading-log
(i.e. collinear) non-infrared (i.e. not soft) component of
the distributions.
– The energy of the final-state charged particle: as the
previous one, this observable is sensitive mainly to the
leading-log (i.e. collinear) non-infrared (i.e. not soft)
component of the distributions.

12 Equations (27) and (25) for |M|2exact and |M|
2
PHOTOS are

for the emissions in case of a single charge final state only; the
interference weight is to introduce the exact matrix element for
a process with two charged scalar final state.
13 For example, the form WTINT−option is inappropriate for
configurations in which the first generated photon is hard and
the second one soft.
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– The angle of the photon with final-state charged par-
ticle: this observable is sensitive mainly to the non-
collinear (i.e. non-leading-log) but soft (i.e. infrared)
component of the distributions.
– The acollinearity angle of the final-state scalars: this
observable is sensitive mainly to the non-collinear (i.e.
non-leading-log) and non-soft (i.e. non-infrared) com-
ponent of the distributions.

We will start our comparison for B−→ π0K−(γ) and
PHOTOS running without improvements from the com-
plete matrix element: the agreement looks good, see Fig. 1,
and holds over the entire range of distributions, even
though the densities vary by up to 8 orders of magni-
tude. Differences can hardly be seen. To visualize the
differences, in Fig. 2, the ratios of the distributions are
plotted. Similar to what was seen in the tests for Z de-
cays [14] local discrepancies may reach up to 15% for
cos θacoll. > 0.5. Note however that those regions of the
phase-space contribute at the level of 10−6 to the total
decay rate. Once the matrix element is switched on,
see Fig. 3, where the ratios of the distribution are plot-
ted, the agreement becomes excellent, even at a statistical
level of 109 events. It was of no use to repeat the plots
of the distributions with the corrected weight in PHO-
TOS, as the plots could not be distinguished from the ones
of Fig. 1.

Fig. 1. Results from PHOTOS, standard version, and SANC for B−→ π0K−(γ) decay are superimposed on the consecutive
plots. Standard distributions, as defined in the text, and logarithmic scales are used. The distributions from the two programs
overlap almost completely. Samples of 109 events were used. The ultraviolet scale, µUV , was chosen to leave the total decay width
unchanged by QED

Encouraged by the excellent performance in the case
of the decay into final states with a single charged par-
ticle, let us now turn to decays into two charged mesons.
To avoid accidental simplifications, we have selected final
states with scalars of different masses (B0→ π−K+(γ)).
Again, as can be seen from Figs. 4 and 5, agreement be-

tween PHOTOS using the standard kernel and SANC is
rather good, but some differences persist. Once the com-
plete kernel is switched on, see Fig. 6, the agreement is
quite amazing. In this case, the interference weight and the
multiple singularity structure of the presampler Jacobians,
see (30), were tested as well. Both versions, WTINT and
WTINT-option, gave the same results for the case of single
photon emission. However, only the first version, WTINT,
turned out to be consistent with exponentiation. To com-
plete the tests for multichannel emissions, final states with
more than two massive decay products need to be studied,
preferably for multiphoton radiation as well.
Let us comment that not only the shapes of the dis-

tribution agree in an excellent manner for the PHOTOS
and SANC simulations; also the number of events with
photons of energy below a certain threshold agreed bet-
ter than 0.01%, and they thus were consistent with each
other within a statistical error of 109 event samples. The
excellent agreement presented in our paper combined with
other results published before help to confirm that theoret-
ical effects normally missing in PHOTOS are small, but if
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Fig. 2. Results from PHOTOS, standard version, and SANC for the ratios of the B−→ π0K−(γ) distribution in Fig. 1 are
presented. Differences between PHOTOS and SANC are small, but are clearly visible now

Fig. 3. Results from PHOTOS with the exact matrix element, and SANC for ratios of the B−→ π0K−(γ) distributions. Differ-
ences between PHOTOS and SANC are below statistical error for samples of 109 events
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Fig. 4. Results from PHOTOS, standard version, and SANC for B0→ π−K+(γ) decay are superimposed on the consecutive
plots. Standard distributions, as defined in the text, and logarithmic scales are used. The distributions from the two programs
overlap almost completely. Samples of 109 events were used. The ultraviolet scale, µUV , was chosen to leave the total decay width
unchanged by QED

Fig. 5. Results from PHOTOS, standard version, and SANC for the ratios of the B0→ π−K+(γ) distributions in Fig. 4 are
presented. Differences between PHOTOS and SANC are small, but are clearly visible now
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Fig. 6. Results from PHOTOS with the exact matrix element, and SANC for the ratios of the B0→ π−K+(γ) distributions.
Differences between PHOTOS and SANC are below statistical error for samples of 109 events

Table 2. Benchmark results for B decays into pair of scalars: electromagnetic cumulative of decay
width Γ (Etest)/Γ

Total, where Etest denotes the maximal energy which can be carried out by pho-
tons. The following input parameters were used:mB = 5279MeV,mπ0 = 135MeV,mπ± = 139MeV,
mK0 = 494MeV, mK± = 498MeV. For the B

− decays µUV = 2500MeV, while for the B
0 decays

µUV = 900MeV. Our results differ negligibly between standard PHOTOS and the one with exact
matrix element; that is why only one set of numerical results is provided. For each decay channel
PHOTOS results of first, second and multiple photon radiation are to a good precision in the follow-
ing proportion 1−x : 1−x+x2/2 : exp(−x), where x for each line of the table is different; it depends
on the decay channel and Etest. To produce the results for our table, samples of 10

7 events were used.
Statistical errors are thus at the level of the last significant digit for all the table entries

Channel Etest SANC PHOTOS

MeV O(α) O(α2) O(exp)

B−→ π−π0 2.6 0.9291 0.9289 0.9314 0.9311

B−→ π−π0 26 0.9571 0.9569 0.9578 0.9577

B−→ π−K0 2.6 0.9294 0.9292 0.9318 0.9314

B−→ π−K0 26 0.9574 0.9572 0.9580 0.9580

B−→K−π0 2.6 0.9627 0.9628 0.9636 0.9634

B−→K−π0 26 0.9777 0.9777 0.9779 0.9779

B−→K−K0 2.6 0.9629 0.9631 0.9639 0.9638

B−→K−K0 26 0.9779 0.9779 0.9782 0.9781

B0→ π−π+ 2.6 0.8311 0.8306 0.8451 0.8433

B0→ π−π+ 26 0.8978 0.8972 0.9019 0.9016

B0→ π−K+ 2.6 0.8662 0.8660 0.8754 0.8741

B0→ π−K+ 26 0.9193 0.9188 0.9219 0.9219

B0→K−π+ 2.6 0.8661 0.8659 0.8753 0.8743

B0→K−π+ 26 0.9193 0.9191 0.9220 0.9219

B0→K−K+ 2.6 0.9011 0.9014 0.9066 0.9057

B0→K−K+ 26 0.9407 0.9407 0.9424 0.9422
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necessary these can be introduced into the code. It is also
important to note that the agreement provides a powerful
technical test of the generator.
Finally, let us point out that early versions of the pro-

gram, before 2004, were not reaching that level of techni-
cal sophistication. To establish it required a major effort.
Kinematical variables used in PHOTOS differ from those
of SANC. The differences could arise due to technical prob-
lems, but also if for example the Born level events that
are to be modified by PHOTOS would not fulfill energy-
momentum conservation, or if the particles’ momenta were
not on mass-shell, at the numerical double precision level.
This point must always be checked for every new instal-
lation of PHOTOS in an experimental environment. For
that purpose we have collected numerical results, given
in Table 2 for the cumulant of the bremsstrahlung de-
cay width G(Etest) = Γ (Etest)/Γ

Total, where Γ (Etest) de-
notes the decay width integrated over the energy carried
by all bremsstrahlung photons combined up to maximum
of Etest.

5 Summary

This paper was devoted to the study of bremsstrahlung
corrections in the decay of B mesons into pair of scalars of
rather large masses. The results were presented in analyti-
cal form and in the form of Monte Carlo simulations, which
were later compared.
To quantify the size of the next to leading order effects

normally missing in PHOTOS, we have installed into the
program the complete scalar QED first order expression
for the B decay matrix element. After modification, the
differences between PHOTOS and the matrix element cal-
culation embodied in SANC were below statistical error
of 109 events for all of our benchmark distributions. Both
PHOTOS and SANC were run at fixed first order without
exponentiation. The agreement provides a technical test of
the simulations from the two programs as well.
The improvement of the agreement due to the intro-

duction of a correcting weight could come but at a price.
That was the case with the decay of Z. However, because
our B mesons are scalar, the complications did not ma-
terialize and a correcting weight can be installed to the
standard PHOTOS versions. On the other hand, the im-
provements introduced are numerically small. The defi-
ciencies of standard PHOTOS are localized in the corners
of bremsstrahlung phase-space populated by photons of
very high energies and angularly well separated from the fi-
nal state mesons. Those regions of the phase space weigh
less than 0.005 of the total rate, and differences in that re-
gion approach 20% of their size, at most. The effects are
thus significantly lower than 0.1%, if quantified in units of
the integrated B decay rate of a particular channel. Also,
in those regions, the predictive power of scalar QED is
rather doubtful. That is why we do not think it is urgent
for users to change the PHOTOS correcting weight to en-
able the complete NLO, unless the measured form-factors
become available. The contribution to the systematic error

of PHOTOS due to incompleteness of the old kernel (with
respect to scalar QED) does not depend on experimen-
tal cuts and is thus of no phenomenological importance
for today.
Our paper was not only focused on numerical results

due to final-state bremsstrahlung in B decays. Aspects of
the mathematical organization of the program for the cal-
culation of radiative corrections for B production and de-
cay have been discussed as well. The approximations used
in PHOTOS affect the matrix elements and not the phase-
space, which is treated exactly including all mass effects.
Details of phase-space parametrization and other as-

pects necessary for the implementation of the NLO effects
are collected for the first time. Generation of the phase-
space starts from the tangent space constructed from an
eikonal approximation but used also for the hard pho-
tons, even of energies above the available maximum. In
the second step, phase-space constraints are enforced. The
method is similar to exclusive exponentiation [24].
A complete re-analysis of the final weight for decays

into scalars was presented. Parts corresponding to the ma-
trix elements, phase-space Jacobians and generator pre-
samples were explicitly separated. Special care was given
to the mass terms. The analytic form of the single photon
emission kernel (i.e. the matrix element with approxima-
tion) used in the standard version of PHOTOS was also
explicitly given. That is why the analysis presented here
can easily be extended to other decay channels. It is the
first time that we have presented such a study for particles
other than elementary fermions and in the case in which

mass terms of order α
π

m21,2
M2
are not neglected. Our analyt-

ical calculations exactly agree with the results of [19] and
could serve as a basis of our technical tests of the program.
The numerical results collected in Table 2 can be used

as a technical test of the PHOTOS installation in end-
user simulation set-ups. We strongly recommend such tests
to be performed. In these tests the agreement between
PHOTOS and SANC (or simple semi-analytical expres-
sions for higher order simulations) was significantly better
than 0.1% for all entries.
In the case that the program operates for multiple

photon radiation, energy momentum constraints are in-
troduced for each consecutive photon, step by step, and
conformal symmetry is not exploited in that procedure.
Details of the phase-space parametrization used for mul-
tiple photon radiation were presented. In principle, for B
decays and multiple photon radiation in PHOTOS, a simi-
lar level of agreement as in [14] for Z decay is expected, but
the appropriate reference distributions do not exist yet. In
particular, the second order scalar QEDmatrix element for
B decays was not available for us. That is why we think
that the matrix-element related details of the program con-
struction, necessary for the implementation of NLL effects
in the general case, must remain delegated to forthcoming
work; probably to the times that we will have at our dis-
posal other second order matrix elements than just those

of Z → ll̄. At present, only the dispersed results (and for
NLL based on analogies with Z decays only) of [2, 14, 25]
are available for that purpose.
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PHOTOS used for the decays of B mesons into scalars
provides an example of a program working for multiple
emissions from both outgoing charged lines. It covers com-
plete phase-space, and no special treatment is needed for
the hard photon emission regions. Also mass terms have
been included without any approximations.
On the technical level it is worth mentioning that the

NLO correcting weight of PHOTOS is used as an internal
weight. All generated events remain of weight 1, exactly as
it was in the case of Z→ µ+µ− decay.
In principle, if necessary, even complete higher order

matrix elements (NNLO level) could be incorporated with
the help of correcting weights. This interesting point defi-
nitely goes beyond the scope of the present paper and also
beyond phenomenological interest for any foreseeable fu-
ture. This is equally true for the possible extensions to
simulations in QCD, which are also outside the scope of the
paper.
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Appendix: Details and properties
of the explicit phase-space
parametrization

Equations (17) and (24) are central in the definition of the
PHOTOS algorithm and its phase-space parametrization.
For the general description details were not important. In
practice, they are nonetheless essential, and all angles and
masses (or energies) used in (20) and (21) must be speci-
fied. In particular, all reference frames used in the defin-
ition of the angles must be defined.
We will start with the detailed description of the para-

metrizations for two-body and three-body phase-spaces;
the latter one with an additional single photon, which ac-
companies the final state of two massive objects (not nec-
essarily of equal masses). In both cases, the decay of an
object of massM and four-momentum P is taken into ac-
count. The straightforward extension for the parametriza-
tion of the multibody decay will be introduced with the
help of the footnote; properties will be discussed later in
the text.
Our particular choice of the phase-space parametriza-

tion is of course motivated by the necessity to regularize
the infrared and collinear singularities. On the other hand,
the definition itself does not need singularities to be ex-
posed, or even to be present at all. For easy reading, let us
point out that (at first) we will expect the collinear singu-
larity to be present only when the photon becomes parallel
to the direction of k1. Later, we will discuss the case when
both final states (of momentum k1 and k2) are charged and
thus the singularity may appear along the two directions.
We will continue with the case when the photon accompa-
nies a multiparticle/multicharge final state and with the
necessity to introduce several simultaneous parametriza-

Fig. 7. The angles θ1, φ1 defined in the rest–frame of P and
used in parametrization of two-body phase-space

Fig. 8. The angle φX is also defined in the rest frame of P as
the angle between (oriented) planes spanned on: (i) k̄1 and ẑ
axis of the P rest frame system, and (ii) k̄1 and x

′′ axis of the k̄2
rest frame. It completes the definition of the phase-space vari-
ables if the internal orientation of k̄1 system is of interest. In
fact, the Euler angle φX is inherited from unspecified details,
the parametrization of phase-space used to describe possible
future decay of k̄2 (or k̄1)

tions, to be used in Monte Carlo parallel generation chan-
nels, used at each step of iteration as defined in (24).
In the following eight points we define the angles used

for the two-body phase-space parametrization, and we con-
tinue with the definition of the phase-space variables of the
two-body plus photon case.

1. For the definition of the coordinate system in the P rest
frame the x̂ and ŷ axes of the laboratory frame boosted
to the rest frame of P can be used. The orthogonal
right-handed system can be constructed with their help
in a standard way.

2. We choose polar angles θ1 and φ1 defining the orienta-
tion of the four-momentum k̄2 in the rest frame of P . In
that frame k̄1 and k̄2 are back to back

14; see Fig. 7.
3. The previous two points would complete the definition
of the two-body phase-space, if both k̄1 and k̄2 had no
measurable spin degrees of freedom visualizing them-
selves e.g. through correlations of the secondary decay
products’ momenta. Otherwise we need to know an ad-
ditional angle φX to complete the set of Euler angles
defining the relative orientation of the axes of the P rest
frame system with the coordinate system used in the
rest frame of k̄2 (and possibly also of k̄1); see Fig. 8.

14 In the case of a phase-space construction for multibody de-
cays k̄2 should be read as a state representing the sum of all
decay products of P but k̄1.
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Fig. 9. The angles θ, φ are used to construct the four-
momentum of kγ in the rest frame of k1+k2 pair (itself not yet
oriented with respect to P rest frame). To calculate the energies
of k1, k2 and the photon, it is enough to know m1, m2, M and
the photon energy kγ of the P rest frame

Fig. 10. Use of angle
φx in defining the orien-
tation of k1, k2 and
the photon in the rest
frame of P . At this step
only the plane spanned
on the P frame axis ẑ
and k2 is oriented with
respect to the k2×x

′′

plane

4. If both the rest frames of k̄1 and k̄2 are of interest, their
coordinate systems are oriented with respect to P with
the help of θ1, φ1 and φX . We assume that the coor-
dinate systems of k̄1 and k̄2 are connected by a boost

along the k̄2 direction, and in fact share axes: z
′ ↑↓ z′′,

x′ ↑↑ x′′ and y′ ↑↓ y′′.
5. Let us turn now to the three-body phase-space para-
metrization. We take the photon energy kγ in the rest
frame of P , and with its help we calculate the photon
energies, k1 and k2, all in the k1+k2 frame.

6. We use the angles θ and φ in the rest frame of
the k1+k2 pair: θ is the angle between the photon and
the direction of k1 (i.e. −z′′ ). The angle φ defines the
photon azimuthal angle around z′′ with respect to the
x′′ axis (of the k2 rest frame); see Fig. 9.

7. If all k1, k2 and k1+k2 rest frames exist, then the x axes
for the three frames are chosen to coincide. This is pos-
sible, because they are all connected by the boosts along
the common z′′ direction; see Fig. 9. The axes of the
k1+k2 rest frame are not drawn explicitly.

8. To define the orientation of k2 in the P rest frame coor-
dinate system, and to complete the construction of the
whole event, we will re-use the Euler angles of k̄2: φX , θ1
and φ1 (see Figs. 10 and 11), defined again, of course, in
the rest frame of P .

This completes our definitions of the parametrizations
for the two-body and three-body phase-spaces necessary
to define the transformation G of (20) and (21). Before
commenting on the properties of our parametrizations,
let us note that these parametrizations were already used
and defined in [2], in full detail, except for the function of
the angle φX (only implicitly introduced there). For some
readers, the definition from that paper may also be easier
to follow.

Fig. 11. Final step in the event construction. The angles θ1
and φ1 are used. The final orientation of k2 coincides with this
of k̄2

Let us comment, now, on those properties of our
parametrizations that are important for the construction
of the PHOTOS algorithm.

a) The parametrizations of the two-body and three-body
phase-space (photon included) are used for the explicit
kinematical construction denoted by (17). We can ex-
change the roles played by k1 and k2. This simple opera-
tion leads to a new phase-space parametrization, which
can be used in a second branch of the Monte Carlo
generation.

b) The phase-space Jacobians (factor Wn+1n of (17)) are
identical for the two branches; this factor is also never
larger than kγ

1
2(2π)3

.

c) The angle θ of the first branch coincides with π− θ of
the second one.

d) In the soft (kγ → 0) and collinear (θ→ 0 or π) lim-
its, the angles θ1, φ1 and φX of the two branches con-
verge to each other (in these limits they may differ by π
or 2π).

e) Properties c) and d) are convenient for our construction
of the weights given by (30), because they coincide with
the similar properties of the exact matrix element.

f) Thanks to property b), also the first version of (30) is
exact. In fact, this first version is more suitable for mul-
tiphoton radiation, if the first order matrix element is
used only. This observation required comparisons with
second order matrix elements [14]. The choice of the k̄2
(or k2) direction to define θ1 and φ1, rather than k̄1, was
also motivated by the properties of the decay matrix
elements.

Let us now present some further observations15, which
go beyond NLO corrections for the processes discussed
in [14] and in the present paper and point out applications
for multibody/multicharge final states.

– Property d) extends to more than two-body decays and
also to cases in which there are more than two charged

15 Note that the approximations to be discussed in the fol-
lowing points result from matching kinematical branches and
affect the way how phase-space Jacobians are used in (30). The
full phase-space remains covered, as is the case of (17) and (24)
denoting exact phase-space parametrization of single and mul-
tiphoton final states.
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particles present in the final state. The relation between
the angles θ1, φ1 and φX of the distinct branches is more
complex, but it is in the limits discussed still indepen-
dent from θ and φ.
– The extended property d) and property e) enable one
to use (30) for multiphoton radiation; this also holds in
the case in which more than two charged particles are
present in the final state.
– That is why, in the case of two-body decays (plus
bremsstrahlung photons), such a type of phase-space
treatment is sufficient for NLO precision.
– For NNLO precision, in matching of the two mappings
for the collinear singularities16 another factor of the
type λ1/2(. . . )/λ1/2(. . . ) would have to be included in
theWn+1n of (17) and (30). In fact, in such a case the ex-
act multiphoton phase-space parametrization would be
preserved.
– For each additional charged decay product present
in the final state, still another factor of the type
λ1/2(. . . )/λ1/2(. . . ) is needed in Wn+1n to assure mul-
tichannel generation with the exact treatment of the
phase-space.
– Even without future refinements (as explained in the
previous two points) our phase-space parametrization
is sufficient for NLO and NLL precision for the two-
body (two-charges) decays, accompanied with an ar-
bitrary number of photons. In the general case, when
more than two charged particles are present in the final
state, such a phase-space parametrization remains suf-
ficient for LL only, even though also in this case the full
multiphoton phase-space is covered. At present, the re-
sulting precision is sufficient and does not justify those
easy changes.
– In our choice of the phase-space parametrization (point
1), we have dropped some details, and the choice of the
x̂, ŷ and ẑ axes of the P rest frame were not specified.
Indeed, for the decay of a scalar object, such as that
discussed in the present paper, every choice is equiva-
lent. In general, this is not the case. Already in the
case of Z boson decay, the choice of the ẑ axis paral-
lel to the direction of the incoming beam of the same
charge as k2 is advantageous; see [14] where the process
e+e−→ Z→ l+l−n(γ) was studied. In this case the di-
rection of the incoming beam coincides with the spin
state of Z, and the choice simplifies the expression for
the matrix element.
– Finally, we may consider extending our method beyond
the decays. In the case of the t-channel processes, or
initial state radiation, particular choices for the frames

and angles would also be essential for the construction
to match the structure of the matrix element singular-
ities. Some hints in that direction can be seen already
now [25, 26].
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